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The entry point to cnfgen library is cnfgen.CNF, which is the data structure representing CNF formulas.
Variables can have text names but in general each variable is an integer from 1 to 𝑛, where 𝑛 is the number of
variables.

>>> from cnfgen import CNF
>>> F = CNF()
>>> x = F.new_variable("X")
>>> y = F.new_variable("Y")
>>> z = F.new_variable("Z")
>>> print(x,y,z)
1 2 3

A clause is a list of literals, and each literal is +v or -v where v is the number corresponding to a variable. The
user can interleave the addition of variables and clauses. Notice that the method :py:method:‘new_variable‘
return the numeric id of the newly added variable, which can be optionally used to build clauses.

>>> F.add_clause([-x, y])
>>> w = F.new_variable("W")
>>> w == 4
True
>>> F.add_clause([-z, 4])
>>> F.number_of_variables()
4
>>> F.number_of_clauses()
2

The CNF object F in the example now encodes the formula

(¬𝑋 ∨ 𝑌 ) ∧ (¬𝑍 ∨𝑊 )

over variables 𝑋 , 𝑌 , 𝑍 and 𝑊 . It is perfectly fine to add variables that do not occur in any clause. Vice versa, it
is possible to add clauses that mention variables never seen before. In that case any unknown variable is silently
added to the formula.

>>> G = CNF()
>>> G.number_of_variables()
0
>>> G.add_clause([-1, 2])
>>> G.number_of_variables()
2
>>> list(G.variables())
[1, 2]

Note: By default the :py:method:‘cnfgen.CNF.add_clause‘ checks that all literals in the clauses are non-zero
integers. Furthermore if there are new variables mentioned in the clause, the number of variables of the formula
is automatically updated. This checks makes adding clauses a bit expensive, and that’s an issue for very large
formulas where millions of clauses are added. It is possible to avoid such checks but then it is resposibility of the
user to keep things consistent.

See also :py:method:‘cnfgen.CNF.debug‘, which in turn can be also used to check the presence of literal repeti-
tions and opposite literals.

It is possible to add clauses directly at the CNF construction. The code

>>> H = CNF([ [1,2,-3], [-2,4] ])

is essentially equivalent to

>>> H = CNF()
>>> H.add_clauses_from([ [1,2,-3], [-2,4] ])

Table of contents 1
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or

>>> H = CNF()
>>> H.add_clause([1,2,-3])
>>> H.add_clause([-2,4])

2 Table of contents



CHAPTER 1

Exporting formulas to DIMACS

One of the main use of CNFgen is to produce formulas to be fed to SAT solvers. These solvers accept CNf
formulas in DIMACS format1, which can easily be obtained using cnfgen.CNF.to_dimacs().

>>> c=CNF([ [1,2,-3], [-2,4] ])
>>> print( c.to_dimacs() )
p cnf 4 2
1 2 -3 0
-2 4 0
<BLANKLINE>
>>> c.add_clause( [-3,4,-5] )
>>> print( c.to_dimacs() )
p cnf 5 3
1 2 -3 0
-2 4 0
-3 4 -5 0
<BLANKLINE>

The variables in the DIMACS representation are numbered according to the order of insertion. CNFgen does not
guarantee anything about this order, unless variables are added explicitly.

1 http://www.cs.ubc.ca/~hoos/SATLIB/Benchmarks/SAT/satformat.ps
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4 Chapter 1. Exporting formulas to DIMACS



CHAPTER 2

Exporting formulas to LaTeX

It is possible to use cnfgen.CNF.to_latex() to get a LaTeX2 encoding of the CNF to include in a document.
In that case the variable names are included literally, therefore it is advisable to use variable names that would
look good in Latex. By default variables i has the assigned name x_{i}.

>>> c=CNF([[-1, 2, -3], [-2,-4], [2,3,-4]])
>>> print(c.to_latex())
\begin{align}
& \left( {\overline{x}_1} \lor {x_2} \lor {\overline{x}_3}
→˓\right) \\
& \land \left( {\overline{x}_2} \lor {\overline{x}_4} \right) \\
& \land \left( {x_2} \lor {x_3} \lor {\overline{x}_4} \right)
\end{align}

which renders as

(𝑥1 ∨ 𝑥2 ∨ 𝑥3) (2.1)
∧ (𝑥2 ∨ 𝑥4)(2.2)
∧ (𝑥2 ∨ 𝑥3 ∨ 𝑥4)(2.3)

Instead of outputting just the LaTeX rendering of the formula it is possible to produce a full LaTeX document by
using cnfgen.CNF.to_latex_document(). The document is ready to be compiled.

2 http://www.latex-project.org/

5
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Reference
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CHAPTER 4

Testing satisfiability

To test the satisfiability of the CNF formula encoded in a cnfgen.CNF instance we can use the cnfgen.CNF.
is_satisfiable() and cnfgen.CNF.solve() methods. The former just gives a boolean answer, with
the latter provides more options about how to run the solver and returns a satisfying assignment found in the
process.

Testing satisfiability of a CNF is not at all considered to be an easy task. In full generality the problem is NP-hard1,
which essentially means that there are no fast algorithm to solve it.

In practice many formula that come from applications can be solved efficiently (i.e. it is possible to rapidly
find a satisfying assignment). There is a whole community of clever software engineers and computer scientists
that compete to write the fastest solver for CNF satisfiability (usually called a SAT solver)2. CNFgen does not
implement a SAT solver, but uses behind the scenes the ones installed in the running environment. If the formula
is satisfiable the value returned includes a satisfying assignment.

>>> from cnfgen import CNF
>>> F = CNF([ [1,-2], [-1] ])
>>> outcome,assignment = F.solve()
>>> outcome
True
>>> assignment == [-1,-2]
True
>>> F.add_clause([2])
>>> F.is_satisfiable()
False

It is always possible to force CNFgen to use a specific solver or a specific command line invocation using the
cmd parameters for cnfgen.CNF.is_satisfiable(). CNFgen knows how to interface with several SAT
solvers but when the command line invokes an unknown solver the parameter sameas can suggest the right
interface to use.

>>> F.is_satisfiable(cmd='minisat -no-pre') # doctest: +SKIP
>>> F.is_satisfiable(cmd='glucose -pre') # doctest: +SKIP
>>> F.is_satisfiable(cmd='lingeling --plain') # doctest: +SKIP
>>> F.is_satisfiable(cmd='sat4j') # doctest: +SKIP

(continues on next page)

1 NP-hardness is a fundamental concept coming from computational complexity, which is the mathematical study of how hard is to perform
certain computations.

(https://en.wikipedia.org/wiki/NP-hardness)
2 See http://www.satcompetition.org/ for SAT solver ranking.

9
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(continued from previous page)

>>> F.is_satisfiable(cmd='my-hacked-minisat -pre',sameas='minisat') # doctest:
→˓+SKIP
>>> F.is_satisfiable(cmd='patched-lingeling',sameas='lingeling') # doctest: +SKIP

10 Chapter 4. Testing satisfiability



CHAPTER 5

Formula families

The defining features of CNFgen is the implementation of several important families of CNF formulas, many of
them either coming from the proof complexity literature or encoding some important problem from combinatorics.
The formula are accessible through the cnfgen package. See for example this construction of the pigeohole
principle formula with 5 pigeons and 4 holes.

>>> import cnfgen
>>> F = cnfgen.PigeonholePrinciple(5,4)
>>> F.is_satisfiable()
False

5.1 Included formula families

All formula generators are accessible from the cnfformula package, but their implementation (and documen-
tation) is split across the following modules. This makes it easy to add new formula families.

5.1.1 cnfgen.families.counting module

Implementation of counting/matching formulas

CountingPrinciple(M, p)
Counting principle

The principle claims that there is a way to partition M elements in sets of size p each.

Parameters

M [non negative integer] size of the domain

p [positive integer] size of each part

Returns

cnfgen.CNF

PerfectMatchingPrinciple(G)
Generates the clauses for the graph perfect matching principle.

11
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The principle claims that there is a way to select edges to such that all vertices have exactly one incident
edge set to 1.

Parameters

G [undirected graph]

5.1.2 cnfgen.families.coloring module

Formulas that encode coloring related problems

EvenColoringFormula(G)
Even coloring formula

The formula is defined on a graph 𝐺 and claims that it is possible to split the edges of the graph in two parts,
so that each vertex has an equal number of incident edges in each part.

The formula is defined on graphs where all vertices have even degree. The formula is satisfiable only on
those graphs with an even number of vertices in each connected component [1].

Returns

CNF object

Raises

ValueError if the graph in input has a vertex with odd degree

References

[1]

GraphColoringFormula(G, colors, functional=True)
Generates the clauses for colorability formula

The formula encodes the fact that the graph 𝐺 has a coloring with color set colors. This means that it
is possible to assign one among the elements in ‘‘colors‘‘to that each vertex of the graph such that no two
adjacent vertices get the same color.

Parameters

G [cnfgen.Graph] a simple undirected graph

colors [non negative int] the number of colors

functional: bool forbid a vertex to be mapped to multiple colors

Returns

CNF the CNF encoding of the coloring problem on graph G

5.1.3 cnfgen.families.graphisomorphism module

Graph isomorphimsm/automorphism formulas

GraphAutomorphism(G)
Graph Automorphism formula

The formula is the CNF encoding of the statement that a graph G has a nontrivial automorphism, i.e. an
automorphism different from the idential one.

Returns

A CNF formula which is satiafiable if and only if graph G has a

nontrivial automorphism.

12 Chapter 5. Formula families



CNFgen Documentation, Release 70e5b68

GraphIsomorphism(G1, G2, nontrivial=False)
Graph Isomorphism formula

The formula is the CNF encoding of the statement that two simple graphs G1 and G2 are isomorphic.

Parameters

G1 [networkx.Graph] an undirected graph object

G2 [networkx.Graph] an undirected graph object

nontrivial: bool forbid identical mapping

Returns

A CNF formula which is satiafiable if and only if graphs G1 and G2

are isomorphic.

5.1.4 cnfgen.families.ordering module

Implementation of the ordering principle formulas

GraphOrderingPrinciple(graph, total=False, smart=False, plant=False, knuth=0)
Generates the clauses for graph ordering principle

Arguments: - graph : undirected graph - total : add totality axioms (i.e. “x < y” or “x > y”) - smart :
“x < y” and “x > y” are represented by a single variable (implies total) - plant : allow last element to be
minimum (and could make the formula SAT) - knuth : Don Knuth variants 2 or 3 of the formula (anything
else suppress it)

OrderingPrinciple(size, total=False, smart=False, plant=False, knuth=0)
Generates the clauses for ordering principle

Arguments: - size : size of the domain - total : add totality axioms (i.e. “x < y” or “x > y”) - smart : “x <
y” and “x > y” are represented by a single variable (implies totality) - plant : allow a single element to be
minimum (could make the formula SAT) - knuth : Donald Knuth variant of the formula ver. 2 or 3 (anything
else suppress it)

5.1.5 cnfgen.families.pebbling module

Implementation of the pigeonhole principle formulas

PebblingFormula(digraph)
Pebbling formula

Build a pebbling formula from the directed graph. If the graph has an ordered_vertices attribute, then it is
used to enumerate the vertices (and the corresponding variables).

Arguments: - digraph: directed acyclic graph.

SparseStoneFormula(D, B)
Sparse Stone formulas

This is a variant of the StoneFormula(). See that for a description of the formula. This variant is such
that each vertex has only a small selection of which stone can go to that vertex. In particular which stones
are allowed on each vertex is specified by a bipartite graph 𝐵 on which the left vertices represent the vertices
of DAG 𝐷 and the right vertices are the stones.

If a vertex of 𝐷 correspond to the left vertex 𝑣 in 𝐵, then its neighbors describe which stones are allowed
for it.

The vertices in 𝐷 do not need to have the same name as the one on the left side of 𝐵. It is only important
that the number of vertices in 𝐷 is the same as the vertices in the left side of 𝐵.

5.1. Included formula families 13
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In that case the element at position 𝑖 in the ordered sequence enumerate_vertices(D) corresponds
to the element of rank 𝑖 in the sequence of left side vertices of 𝐵 according to the output of Left, Right
= bipartite_sets(B).

Standard StoneFormula() is essentially equivalent to a sparse stone formula where 𝐵 is the complete
graph.

Parameters

D [a directed acyclic graph] it should be a directed acyclic graph.

B [bipartite graph]

Raises

ValueError if 𝐷 is not a directed acyclic graph

ValueError if 𝐵 is not a bipartite graph

ValueError when size differs between 𝐷 and the left side of 𝐵

See also:

StoneFormula

StoneFormula(D, nstones)
Stone formulas

The stone formulas have been introduced in [2] and generalized in [1]. They are one of the classic examples
that separate regular resolutions from general resolution [1].

A “Stones formula” from a directed acyclic graph 𝐷 claims that each vertex of the graph is associated with
one on 𝑠 stones (not necessarily in an injective way). In particular for each vertex 𝑣 in 𝑉 (𝐷) and each stone
𝑗 we have a variable 𝑃𝑣,𝑗 that claims that stone 𝑗 is associated to vertex 𝑣.

Each stone can be either red or blue, and not both. The propositional variable 𝑅𝑗 if true when the stone 𝑗 is
red and false otherwise.

The clauses of the formula encode the following constraints. If a stone is on a source vertex (i.e. a vertex
with no incoming edges), then it must be red. If all stones on the predecessors of a vertex are red, then the
stone of the vertex itself must be red.

The formula furthermore enforces that the stones on the sinks (i.e. vertices with no outgoing edges) are
blue.

Parameters

D [a directed acyclic graph] it should be a directed acyclic graph.

nstones [int] the number of stones.

Raises

ValueError if 𝐷 is not a directed acyclic graph

ValueError if the number of stones is negative

References

[1], [2]

5.1.6 cnfgen.families.pigeonhole module

Pigeonhole principle formulas

The pigeonhole principle PHP𝑚
𝑛 , written in conjunctive normal form, is a propositional formula which claims that

it is possible to place 𝑚 pigeons into 𝑛 holes without collisions, whenever 𝑚 > 𝑛.

14 Chapter 5. Formula families
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Pigeonhole principle formulas are classic benchmarks for SAT solving and for Resolution proof systems. The
module contains the implementation of several variants of this formulas.

The most classic pigeonhole principle formula PHP𝑛+1
𝑛 was the first CNF proved to be hard for resolution [H85].

BinaryPigeonholePrinciple(pigeons, holes)
Binary Pigeonhole Principle CNF formula

The binary pigeonhole principle CNF formula claims that that it is possibile to place 𝑚 pigeons into 𝑛 holes
without collisions. This is clearly impossible whenever 𝑚 > 𝑛.

This formula encodes the principle using binary strings to identify the holes. Let 𝑏 the smallest number of
bits sufficient to encode in binary all values from 0 to 𝑛−1. For every 𝑖 ∈ [𝑚] there are 𝑏 dedicated boolean
variables encoding the hole where the pigeon 𝑖 flies.

Parameters

pigeon: int number of pigeons (must be >=0).

hole: int number of holes (must be >=0).

Returns

cnfgen.formula.cnf.CNF A CNF formulas encoding binary the pigeonhole princi-
ple.

Raises

TypeError If either pigeons or holes is not an integer number.

ValueError If either pigeons or holes is less than zero.

GraphPigeonholePrinciple(G, functional=False, onto=False)
Graph Pigeonhole Principle CNF formula

The graph pigeonhole principle CNF formula, defined on a bipartite graph 𝐺 = (𝐿,𝑅,𝐸), is a variant of
the pigeonhole principle where the left vertices 𝐿 are the pigeons, the right vertices 𝑅 are the holes. The
formula claims that there is a subset of edges 𝐸′ ⊆ 𝐸 such that every vertex in 𝑢 ∈ 𝐿 has at least one
incident edge in 𝐸′ and every 𝑣 ∈ 𝑅 has at most one incident edge in 𝐸′.

The formula is satisfiable if and only if the graph has a matching of size |𝐿|.

The formula is encoded with variables 𝑝𝑢,𝑣 for 𝑢 ∈ 𝐿 and 𝑣 ∈ 𝑅 where the intended meaning is that 𝑝𝑢,𝑣 is
True when pigeon 𝑢 flies into hole 𝑣. There are different variants of this formula, depending on the values
of functional and onto argument.

• PHP(G): each 𝑢 ∈ 𝐿 can fly to multiple 𝑣 ∈ 𝑅

• FPHP(G): each 𝑢 ∈ 𝐿 can fly to exactly one 𝑣 ∈ 𝑅

• onto-PHP: each 𝑣 ∈ 𝑅 must get a pigeon

• matching: 𝐸′ must be a perfect matching

Parameter G can be either of type cnfgen.graphs.BipartiteGraph or of type a networkx.
graph. In the latter case it must be a correct representation of a bipartite graph according to [NetworkX].

Parameters

G [cnfgen.graphs.BipartiteGraph or networkx.graph] the bipartite graph
describing the possible pairings

functional: bool enforce at most one edge per left vertex

onto: bool enforce that any right vertex has one incident edge

Returns

cnfgen.formula.cnf.CNF A CNF formulas encoding the graph pigeonhole princi-
ple.

5.1. Included formula families 15
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Raises

TypeError G is neither a cnfgen.graphs.BipartiteGraph nor a networkx.
graph

ValueError G is not a proper bipartite graph

References

[Networkx] https://networkx.org/documentation/networkx-2.5/reference/algorithms/generated/networkx.
algorithms.bipartite.basic.is_bipartite.html

PigeonholePrinciple(pigeons, holes, functional=False, onto=False)
Pigeonhole Principle CNF formula

The pigeonhole principle CNF formula claims that that it is possibile to place 𝑚 pigeons into 𝑛 holes without
collisions. This is clearly impossible whenever 𝑚 > 𝑛.

The formula is encoded with variables 𝑝𝑖,𝑗 for 𝑖 ∈ [𝑚] and 𝑗 ∈ [𝑛] where the intended meaning is that 𝑝𝑖,𝑗
is True when pigeon 𝑖 flies into hole 𝑗. There are different variants of this formula, depending on the values
of functional and onto argument.

• PHP: pigeon can sit in multiple holes

• FPHP: each pigeon sits in exactly one hole

• onto-PHP: pigeon can sit in multiple holes, every hole must be covered

• Matching: one-to-one bijection between pigeons and holes.

Parameters

pigeon: int number of pigeons (must be >=0).

hole: int number of holes (must be >=0).

functional: bool, optional enforce at most one hole per pigeon (default: False).

onto: bool, optional enforce that any hole must have a pigeon (default: False).

Returns

cnfgen.formula.cnf.CNF A CNF formulas encoding the pigeonhole principle.

Raises

TypeError If either pigeons or holes is not an integer number.

ValueError If either pigeons or holes is less than zero.

Examples

>>> print(PigeonholePrinciple(4,3).to_dimacs())
p cnf 12 22
1 2 3 0
4 5 6 0
7 8 9 0
10 11 12 0
-1 -4 0
-1 -7 0
-1 -10 0
-4 -7 0
-4 -10 0
-7 -10 0
-2 -5 0
-2 -8 0

(continues on next page)

16 Chapter 5. Formula families
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(continued from previous page)

-2 -11 0
-5 -8 0
-5 -11 0
-8 -11 0
-3 -6 0
-3 -9 0
-3 -12 0
-6 -9 0
-6 -12 0
-9 -12 0
<BLANKLINE>

RelativizedPigeonholePrinciple(pigeons, resting_places, holes)
Relativized Pigeonhole Principle CNF formula

This formula is a variant of the pigeonhole principle. We consider 𝑚 pigeons, 𝑟 resting places, and 𝑛 holes.
The formula claims that pigeons can fly into holes with no conflicts, with the additional caveat that before
landing in a hole, each pigeon stops in some resting place. No two pigeons can rest in the same place.

The formula is encoded with variables 𝑝𝑖,𝑗 for 𝑖 ∈ [𝑚] and 𝑘 ∈ [𝑡], and variables 𝑞𝑘,𝑗 for 𝑘 ∈ [𝑡] and 𝑗 ∈ [𝑛].
The intended meaning is that 𝑝𝑖,𝑘 is True when pigeon 𝑖 rests into a resting place 𝑘, and 𝑞𝑘,𝑗 is True when
the pigeon resting at 𝑘 flies into hole 𝑗. The formula is only satisfiable when 𝑚 ≤ 𝑡 ≤ 𝑛.

A more complete description of the formula can be found in [ALN16]

Parameters

pigeons: int number of pigeons (must be >=0).

resting_places: int number of resting places (must be >=0).

holes: int number of holes (must be >=0).

Returns

cnfgen.formula.cnf.CNF A CNF formulas encoding the pigeonhole principle.

Raises

TypeError If either pigeons, resting_places, or holes is not an integer number.

ValueError If either pigeons, resting_places, or holes is less than zero.

References

[ALN16]

5.1.7 cnfgen.families.pitfall module

Implementation of the Pitfall formula by Marc Vinyals, according to the paper [MV20].

PitfallFormula(v, d, ny, nz, k)
Pitfall Formula

The Pitfall formula was designed to be specifically easy for Resolution and hard for common CDCL heuris-
tics. The formula is unsatisfiable and consists of three parts: an easy formula, a hard formula, and a pitfall
misleading the solver into working with the hard part.

The hard part are several copies of an unsatisfiable Tseitin formula on a random regular graph. The pitfall
part is made up of a few gadgets over (primarily) two sets of variables: pitfall variables, which point the
solver towards the hard part after being assigned, and safety variables, which prevent the gadget from
breaking even if a few other variables are assigned.

For more details, see the corresponding paper [1].

5.1. Included formula families 17
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Parameters

v [positive integer] number of vertices of the Tseitin graph

d [positive integer] degree of the Tseitin graph

ny [positive integer] number of pitfall variables

nz [positive integer] number of safety variables

k [positive, even integer] number of copies of the hard and pitfall parts; controls how easy
the easy part is

Returns

A CNF object

Raises

ValueError The is no d-regular graph when v < d or d*v are odd.

References

[1]

5.1.8 cnfgen.families.ramsey module

CNF Formulas for Ramsey-like statements

PythagoreanTriples(N)
There is a Pythagorean triples free coloring on N

The formula claims that it is possible to bicolor the numbers from 1 to 𝑁 so that there is no monochromatic
triplet (𝑥, 𝑦, 𝑧) so that 𝑥2 + 𝑦2 = 𝑧2.

Parameters

N [int] size of the interval

Raises

ValueError Parameters are not positive

TypeError Parameters are not integers

References

[1]

RamseyNumber(s, k, N)
Ramsey number r(s,k) > N

This formula, given 𝑠, 𝑘, and 𝑁 , claims that there is some graph with 𝑁 vertices which has neither inde-
pendent sets of size 𝑠 nor cliques of size 𝑘.

It turns out that there is a number 𝑟(𝑠, 𝑘) so that every graph with at least 𝑟(𝑠, 𝑘) vertices must contain either
one or the other. Hence the generated formula is satisfiable if and only if

𝑟(𝑠, 𝑘) > 𝑁

Parameters

s [int] independent set size

k [int] clique size

N [int] number of vertices
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Returns

A CNF object

Raises

ValueError Parameters are not positive

TypeError Parameters are not integers

VanDerWaerden(N, k1, k2, *ks)
Formula claims that van der Waerden number vdw(k1,k2,k3,k4,. . . ) > N

Consider a coloring the of integers from 1 to 𝑁 , with 𝑑 colors. The coloring has an arithmetic progression
of color 𝑐 of length 𝑘 if there are 𝑖 and 𝑑 so that all numbers

𝑖, 𝑖 + 𝑑, 𝑖 + 2𝑑, . . . , 𝑖 + (𝑘 − 1)𝑑

have color 𝑐. In fact, given any number of lengths 𝑘1, 𝑘2,. . . , 𝑘𝐶 , there is some value of 𝑁 large enough so
that no matter how the integers 1, . . . , 𝑁 are colored with 𝐶 colors, such coloring must have one arithmetic
progression of color 𝑐 and length 𝑘𝑐.

The smallest 𝑁 such that it is impossible to avoid the arithmetic progression regardless of the coloring is
called van der Waerden number and is denotes as

𝑉 𝐷𝑊 (𝑘1, 𝑘2, . . . , 𝑘𝐶)

The formula, given 𝑁 and :math‘k_1‘, :math‘k_2‘ , ldots, :math‘k_C‘, is the CNF encoding of the claim

𝑉 𝐷𝑊 (𝑘1, 𝑘2, . . . , 𝑘𝐶) > 𝑁

which is expressed, more concretely, as a CNF which forbids, for each color 𝑐 between 1 and 𝐶, all arith-
metic progressions of length 𝑘𝐶

Parameters

N [int] size of the interval

k1: int length of the arithmetic progressions of color 1

k2: int length of the arithmetic progressions of color 2

*ks [optional] lengths of the arithmetic progressions of color >2

Returns

A CNF object

Raises

ValueError Parameters are not positive

TypeError Parameters are not integers

5.1.9 cnfgen.families.randomformulas module

Random CNF Formulas

RandomKCNF(k, n, m, seed=None, planted_assignments=None)
Build a random k-CNF

Sample 𝑚 clauses over 𝑛 variables, each of width 𝑘, uniformly at random. The sampling is done without
repetition, meaning that whenever a randomly picked clause is already in the CNF, it is sampled again.

Parameters

k [int] width of each clause
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n [int] number of variables to choose from. The resulting CNF object will contain n vari-
ables even if some are not mentioned in the clauses.

m [int] number of clauses to generate

seed [hashable object] seed of the random generator

planted_assignments [iterable(lists), optional] a set of total/partial assigments such that
all clauses in the formula will be satisfied by all of them. Each partial assignment is a
sequence of literals. Undefined behaviour if some assignment contains opposite literals.

Returns

a CNF object

Raises

ValueError when some paramenter is negative, or when k>n.

all_clauses(k, n, planted_assignments)

clause_satisfied(cls, assignments)
Test whether a clause is satisfied by all assignments

Test if clauses cls is satisfied by all assigment in the list assignments.

sample_clauses(k, n, m, planted_assignments)
Sample m random k-clauses on a set of n variables

First it tries sparse sampling: - samples with repetition which is fast - filters bad samples

If after enough samples we haven’t got enough clauses we use dense sampling, namely we generare all
possible clauses and pick at random m of them. This approach always succeeds, but is quite slower and
wasteful for just few samples.

sample_clauses_dense(k, n, m, planted_assignments)

5.1.10 cnfgen.families.subgraph module

Implementation of formulas that check for subgraphs

BinaryCliqueFormula(G, k, symbreak=True)
Test whether a graph has a k-clique (binary encoding)

Given a graph 𝐺 and a non negative value 𝑘, the CNF formula claims that 𝐺 contains a 𝑘-clique. This
formula uses the binary encoding, in the sense that the clique elements are indexed by strings of bits.

Parameters

G [cnfgen.Graph] a simple graph

k [a non negative integer] clique size

symbreak: bool force mapping to be non decreasing

Returns

a CNF object

CliqueFormula(G, k, symbreak=True)
Test whether a graph has a k-clique.

Given a graph 𝐺 and a non negative value 𝑘, the CNF formula claims that 𝐺 contains a 𝑘-clique.

Parameters

G [cnfgen.Graph] a simple graph

k [a non negative integer] clique size

symbreak: bool force mapping to be non decreasing
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Returns

a CNF object

RamseyWitnessFormula(G, k, s, symbreak=True)
True if graph contains either k-clique or and s independent set

Given a graph 𝐺 and a non negative values 𝑘 and 𝑠, the CNF formula claims that 𝐺 contains a neither a
𝑘-clique nor an independet set of size 𝑠.

Parameters

G [cnfgen.Graph] a simple graph

k [a non negative integer] clique size

s [a non negative integer] independet set size

symbreak: bool force mapping to be non decreasing

Returns

a CNF object

SubgraphFormula(G, H, induced=False, symbreak=False)
Test whether a graph has a k-clique.

Given two graphs 𝐻 and 𝐺, the CNF formula claims that 𝐻 is an (induced) subgraph of 𝐺.

Parameters

G [cnfgen.Graph] a simple graph

H [cnfgen.Graph] the candidate subgraph

induced: bool test for induced containment

symbreak: bool force mapping to be non decreasing (this makes sense only if 𝑇 is sym-
metric)

Returns

a CNF object

non_edges(G)

5.1.11 cnfgen.families.subsetcardinality module

Implementation of subset cardinality formulas

SubsetCardinalityFormula(B, equalities=False)
Consider a bipartite graph 𝐵. The CNF claims that at least half of the edges incident to each of the vertices
on left side of 𝐵 must be zero, while at least half of the edges incident to each vertex on the left side must
be one.

Variants of these formula on specific families of bipartite graphs have been studied in [1], [2] and [3], and
turned out to be difficult for resolution based SAT-solvers.

Each variable of the formula is denoted as 𝑥𝑖,𝑗 where {𝑖, 𝑗} is an edge of the bipartite graph. The clauses of
the CNF encode the following constraints on the edge variables.

For every left vertex i with neighborhood Γ(𝑖)∑︁
𝑗∈Γ(𝑖)

𝑥𝑖,𝑗 ≥
|Γ(𝑖)|

2

For every right vertex j with neighborhood Γ(𝑗)∑︁
𝑖∈Γ(𝑗)

𝑥𝑖,𝑗 ≤
|Γ(𝑗)|

2
.
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If the equalities flag is true, the constraints are instead represented by equations.∑︁
𝑗∈Γ(𝑖)

𝑥𝑖,𝑗 =

⌈︂
|Γ(𝑖)|

2

⌉︂
∑︁

𝑖∈Γ(𝑗)

𝑥𝑖,𝑗 =

⌊︂
|Γ(𝑗)|

2

⌋︂
.

Parameters

B [cnfgen.graphs.BipartiteGraph] the graph vertices must have the ‘bipartite’ attribute set.
Left vertices must have it set to 0 and the right ones to 1. A KeyException is raised
otherwise.

equalities [boolean] use equations instead of inequalities to express the cardinality con-
straints. (default: False)

Returns

A CNF object

References

[1], [2], [3]

5.1.12 cnfgen.families.cliquecoloring module

Implementation of the clique-coloring formula

CliqueColoring(n, k, c)
Clique-coloring CNF formula

The formula claims that a graph 𝐺 with 𝑛 vertices simultaneously contains a clique of size 𝑘 and a coloring
of size 𝑐.

If 𝑘 = 𝑐 + 1 then the formula is clearly unsatisfiable, and it is the only known example of a formula hard
for cutting planes proof system. [1]

Variables 𝑒𝑢,𝑣 to encode the edges of the graph.

Variables 𝑞𝑖,𝑣 encode a function from [𝑘] to [𝑛] that represents a clique.

Variables 𝑟𝑣,ℓ encode a function from [𝑛] to [𝑐] that represents a coloring.

Parameters

n [number of vertices in the graph]

k [size of the clique]

c [size of the coloring]

Returns

A CNF object

References

[1]
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5.1.13 cnfgen.families.tseitin module

Implementation of Tseitin formulas

TseitinFormula(G, charges=None)
Build a Tseitin formula based on the input graph.

By default, an odd charge is put on the first vertex, unless another pattern of charges are specified. The
pattern is specified via a sequence of boolean values in the charges variable (True means odd). If the
sequence is shorter than the sequence of vertices, it is padded with Falses. If it is longer, excessive values
will be ignored. Any non-boolean value in charges is interpreted as boolean via bool cast.

Parameters

G [cnfgen.Graph or networkx.Graph]

charges: a sequence of boolean

5.1.14 cnfgen.families.cpls module

Implementation of Thapen’s size-width tradeoff formula

CPLSFormula(a, b, c)
Thapen’s size-width tradeoff formula

The formula is a propositional version of the coloured polynomial local search principle (CPLS). A descrip-
tion can be found in [1]. The difference with the formula in the paper is that here, unary indices start from 1
instead of 0. Binary strings stil counts from 0, therefore the mappings 𝑓 [𝑖](𝑥) = 𝑥′ is actually represented
in binary with the binary representation of 𝑥′ − 1.

Parameters

a: integer number of levels

b: integer nodes per level (must be a power of 2)

c: integer number of colours (must be a power of 2)

References

[1]

intlog2(x)
Compute the ceiling of the log2(x)

5.2 Command line invocation

Furthermore it is possible to generate the formulas directly from the command line. To list all formula families
accessible from the command line just run the command cnfgen --help. To get information about the specific
command line parameters for a formula generator run the command cnfgen <generator_name> --help.

Recall the example above, in hich we produced a pigeohole principle formula for 5 pigeons and 4 holes. We can
get the same formula in DIMACS format with the following command line.

$ cnfgen php 5 4
c description: Pigeonhole principle formula for 5 pigeons and 4 holes
c generator: CNFgen (0.8.6-5-g56a1e50)
c copyright: (C) 2012-2020 Massimo Lauria <massimo.lauria@uniroma1.it>
c url: https://massimolauria.net/cnfgen
c command line: cnfgen php 5 4
c

(continues on next page)
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(continued from previous page)

p cnf 20 45
1 2 3 4 0
5 6 7 8 0
9 10 11 12 0
13 14 15 16 0
17 18 19 20 0
-1 -5 0
-1 -9 0
-1 -13 0
-1 -17 0
-5 -9 0
-5 -13 0
-5 -17 0
-9 -13 0
-9 -17 0
-13 -17 0
-2 -6 0
-2 -10 0
-2 -14 0
-2 -18 0
-6 -10 0
-6 -14 0
-6 -18 0
-10 -14 0
-10 -18 0
-14 -18 0
-3 -7 0
-3 -11 0
-3 -15 0
-3 -19 0
-7 -11 0
-7 -15 0
-7 -19 0
-11 -15 0
-11 -19 0
-15 -19 0
-4 -8 0
-4 -12 0
-4 -16 0
-4 -20 0
-8 -12 0
-8 -16 0
-8 -20 0
-12 -16 0
-12 -20 0
-16 -20 0
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CHAPTER 6

Graph based formulas

The most interesting benchmark formulas have a graph structure. See the following example, where cnfgen.
TseitinFormula() is realized over a star graph with five arms.

>>> import cnfgen
>>> from pprint import pprint
>>> G = cnfgen.Graph.star_graph(5)
>>> list(G.edges())
[(1, 6), (2, 6), (3, 6), (4, 6), (5, 6)]
>>> F = cnfgen.TseitinFormula(G,charges=[0,1,0,0,1,0])
>>> pprint(F.solve())
(True, [-1, 2, -3, -4, 5])

Tseitin formulas can be really hard for if the graph has large edge expansion. Indeed the unsatisfiable version of
this formula requires exponential running time in any resolution based SAT solver1.

In the previous example the structure of the CNF was a simple undirected graph, but in CNFgen we have formulas
built around four different types of graphs.

simple simple graph default graph
bipartite bipartite graph vertices split in two inpedendent sets
digraph directed graph each edge has an orientation
dag directed acyclic graph no cycles, edges induce a partial ordering

Internally, vertices of these graphs are identified as integer starting from 1. Edges are pairs of integers and in
general the data structure is such that edge lists and neighborhoods are given in a sorted fashion. - cnfgen.
Graph to represent undirected graphs simple. - cnfgen.DirectedGraph: to represent directed graphs

digraph and dag (directed acyclic graphs). A DAG is a DirectedGraph where all edges go from
vertices with loweer id to vertices with higher id. Therefore the ids of the vertices must represent
a topological order of the DAG. In particular a directed graph maybe acyclic but yet not considered
a dag in CNFgen. The method cnfgen.DirectedGraph.is_dag() checks that the directed
graph is indeed a DAG according to this standard.

• cnfgen.BipartiteGraph represents graph of bipartite type. The vertices are divided in two parts
(left and right) and the vertices in each part are enumerated from 1. For example in a graph with 10 vertices
on the left side and 4 vertices on the right side, the edge (6,3) connects vertex 6 on the left with vertex 4
on the right. Similarly edge (2,2) connects vertex 2 on the left to vertex 2 on the right.

1 A. Urquhart. Hard examples for resolution. Journal of the ACM (1987) http://dx.doi.org/10.1145/48014.48016
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6.1 Directed Acyclic Graphs

In CNFgen a DAG is an object of type cnfgen.DirectedGraphwhich furthermore passes the test cnfgen.
DirectedGraph.is_dag(). We stress that the vertices numeric id must induce a topological order for the
graph to be a dag.

>>> from cnfgen import DirectedGraph
>>> G = DirectedGraph(3)
>>> G.add_edges_from([(1,2),(2,3),(3,1)])
>>> G.is_dag()
False
>>> H = DirectedGraph(4)
>>> H.add_edges_from([(1,2),(2,3),(3,4)])
>>> H.is_dag()
True
>>> Z = DirectedGraph(4)
>>> Z.add_edges_from([(1,2),(3,2)])
>>> Z.is_dag()
False

6.2 Bipartite Graphs

We represent bipartite graphs using cnfgen.BipartiteGraph.

>>> B = cnfgen.graphs.BipartiteGraph(2,3)
>>> B.left_order()
2
>>> B.right_order()
3
>>> B.order()
5
>>> B.add_edges_from([(1,2),(2,1),(2,3)])
>>> B.number_of_edges()
3
>>> F = cnfgen.GraphPigeonholePrinciple(B)
>>> sorted(F.all_variable_labels())
['p_{1,2}', 'p_{2,1}', 'p_{2,3}']

6.3 Graph I/O

Furthermore CNFgen allows graphs I/O on files, in few formats. The function cnfgen.
supported_graph_formats() lists the file formats available for each graph type.

>>> from cnfgen import supported_graph_formats
>>> from pprint import pprint
>>> pprint(supported_graph_formats())
{'bipartite': ['kthlist', 'gml', 'dot', 'matrix'],
'dag': ['kthlist', 'gml', 'dot', 'dimacs'],
'digraph': ['kthlist', 'gml', 'dot', 'dimacs'],
'simple': ['kthlist', 'gml', 'dot', 'dimacs']}

The dot and gml formats are read using NetworkX library, which is a powerful library for graph manipulation.
The support for the other formats is natively implemented.

The dot format is is from Graphviz and it is available only if the optional pydot python package is installed in
the system. The Graph Modelling Language (GML) gml is a modern industrial standard in graph representation.
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The DIMACS (dimacs) format2 is used sometimes for programming competitions or in the theoretical computer
science community. For more informations about kthlist and matrix formats you can refer to the User
Documentation.

To facilitate graph I/O CNFgen has to functions cnfgen.graphs.readGraph() and cnfgen.graphs.
writeGraph().

Both readGraph and writeGraph operate either on filenames, encoded as str, or on file-like objects such as

• standard file objects (including sys.stdin and sys.stdout);

• string buffers of type io.StringIO;

• in-memory text streams that inherit from io.TextIOBase.

>>> import sys
>>> from io import BytesIO
>>> import networkx as nx
>>> from cnfgen import readGraph, writeGraph, BipartiteGraph

>>> G = BipartiteGraph(3,3,name='a bipartite graph')
>>> G.add_edges_from([[1,1],[1,2],[2,3]])
>>> G.number_of_edges()
3
>>> writeGraph(G,sys.stdout,graph_type='bipartite',file_format='gml')
graph [
name "a bipartite graph"
node [

id 0
label "1"
bipartite 0

]
node [

id 1
label "2"
bipartite 0

]
node [

id 2
label "3"
bipartite 0

]
node [

id 3
label "4"
bipartite 1

]
node [

id 4
label "5"
bipartite 1

]
node [

id 5
label "6"
bipartite 1

]
edge [

source 0
target 3

]
edge [

(continues on next page)

2 Beware. Here we are talking about the DIMACS format for graphs, not the DIMACS file format for CNF formulas.
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(continued from previous page)

source 0
target 4

]
edge [

source 1
target 5

]
]
<BLANKLINE>
>>> from io import StringIO
>>> textbuffer = StringIO("graph X { 1 -- 2 -- 3 }")
>>> G = readGraph(textbuffer, graph_type='simple', file_format='dot')
>>> E = G.edges()
>>> (1, 2) in E
True
>>> (2, 3) in E
True
>>> (1, 3) in E
False

There are several advantages with using those functions, instead of the reader/writer implemented NextowrkX.
First of all the reader always verifies that when reading a graph of a certain type, the actual input actually matches
the type. For example if the graph is supposed to be a DAG, then cnfgen.graphs.readGraph() would
check that.

>>> buffer = StringIO('digraph A { 1 -- 2 -- 3 -- 1}')
>>> readGraph(buffer,graph_type='dag',file_format='dot')
Traceback (most recent call last):
...
ValueError: [Input error] Graph must be explicitly acyclic ...

When the file object has an associated file name, it is possible to omit the file_format argument. In this latter
case the appropriate choice of format will be guessed by the file extension.

>>> with open(tmpdir+"example_dag1.dot","w") as f:
... print("digraph A {1->2->3}",file=f)
>>> G = readGraph(tmpdir+"example_dag1.dot",graph_type='dag')
>>> list(G.edges())
[(1, 2), (2, 3)]

is equivalent to

>>> with open(tmpdir+"example_dag2.gml","w") as f:
... print("digraph A {1->2->3}",file=f)
>>> G = readGraph(tmpdir+"example_dag2.gml",graph_type='dag',file_format='dot')
>>> list(G.edges())
[(1, 2), (2, 3)]

Instead, if we omit the format and the file extension is misleading we would get and error.

>>> with open(tmpdir+"example_dag3.gml","w") as f:
... print("digraph A {1->2->3}",file=f)
>>> G = readGraph(tmpdir+"example_dag3.gml",graph_type='dag')
Traceback (most recent call last):
...
ValueError: [Parse error in GML input] ...

This is an example of GML file.

>>> gml_text ="""graph [
... node [

(continues on next page)
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(continued from previous page)

... id 1

... label "a"

... ]

... node [

... id 2

... label "b"

... ]

... edge [

... source 1

... target 2

... ]

... ]"""
>>> with open(tmpdir+"example_ascii.gml","w",encoding='ascii') as f:
... print(gml_text,file=f)
>>> G = readGraph(tmpdir+"example_ascii.gml",graph_type='simple')
>>> (1,2) in G.edges()
True

Recall that GML files are supposed to be ASCII encoded.

>>> gml_text2="""graph [
... node [
... id 0
... label "à"
... ]
... node [
... id 1
... label "è"
... ]
... edge [
... source 0
... target 1
... ]
... ]"""

>>> with open(tmpdir+"example_utf8.gml","w",encoding='utf-8') as f:
... print(gml_text2,file=f)
>>> G = readGraph(tmpdir+"example_utf8.gml",graph_type='dag')
Traceback (most recent call last):
...
ValueError: [Non-ascii chars in GML file] ...

6.4 Graph generators

Note: See the documentation of the module cnfgen.graphs for more information about the CNFgen support
code for graphs.

6.5 References
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CHAPTER 7

Post-process a CNF formula

After you produce a cnfgen.CNF, maybe using one of the generators included, it is still possible to modify it.
One simple ways is to add new clauses but there are ways to make the formula harder with some structured trans-
formations. Usually this technique is employed to produce interesting formulas for proof complexity applications
or to benchmark SAT solvers.

7.1 Example: OR substitution

As an example of formula post-processing, we transform a formula by substituting every variable with the logical
disjunction of, says, 3 fresh variables. Consider the following CNF as starting point.

(¬𝑋 ∨ 𝑌 ) ∧ (¬𝑍)

After the substitution the new formula is still expressed as a CNF and it is

(¬𝑋1 ∨ 𝑌1 ∨ 𝑌2 ∨ 𝑌3)∧
(¬𝑋2 ∨ 𝑌1 ∨ 𝑌2 ∨ 𝑌3)∧
(¬𝑋3 ∨ 𝑌1 ∨ 𝑌2 ∨ 𝑌3)∧
(¬𝑍1) ∧ (¬𝑍2) ∧ (¬𝑍3)

There are many other transformation methods than OR substitution. Each method comes with a rank parameter
that controls the hardness after the substitution. In the previous example the parameter would be the number of
variables used in the disjunction to substitute the original variables.

7.2 Using CNF transformations

We implement the following transformation methods. The none method just leaves the formula alone. It is a null
transformation in the sense that, contrary to the other methods, this one returns exactly the same cnfgen.CNF
object that it gets in input. All the other methods would produce a new CNF object with the new formula. The old
one is left untouched.

Some method implemented as still missing from the list

31
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Name Description Default rank See documentation
none leaves the formula alone ignored
eq all variables equal 3 cnfgen.AllEqualSubstitution
ite if x then y else z ignored cnfgen.IfThenElseSubstitution
lift lifting 3 cnfgen.FormulaLifting
maj Loose majority 3 cnfgen.MajoritySubstitution
neq not all vars equal 3 cnfgen.NotAllEqualSubstitution
one Exactly one 3 cnfgen.ExactlyOneSubstitution
or OR substitution 2 cnfgen.OrSubstitution
xor XOR substitution 2 cnfgen.XorSubstitution

Any cnfgen.CNF can be post-processed using the function cnfgen.TransformFormula(). For example
to substitute each variable with a 2-XOR we can do

>>> from cnfgen import CNF, XorSubstitution
>>> F = CNF([ [1,2,-3], [-2,4] ])
>>> G = XorSubstitution(F,2)

Here is the original formula.

>>> print( F.to_dimacs() )
p cnf 4 2
1 2 -3 0
-2 4 0
<BLANKLINE>

Here it is after the transformation.

>>> print( G.to_dimacs() )
p cnf 8 12
1 2 3 4 5 -6 0
1 2 3 4 -5 6 0
1 2 -3 -4 5 -6 0
1 2 -3 -4 -5 6 0
-1 -2 3 4 5 -6 0
-1 -2 3 4 -5 6 0
-1 -2 -3 -4 5 -6 0
-1 -2 -3 -4 -5 6 0
3 -4 7 8 0
3 -4 -7 -8 0
-3 4 7 8 0
-3 4 -7 -8 0
<BLANKLINE>

It is possible to omit the rank parameter. In such case the default value is used.
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CHAPTER 8

The command line utility

Most people are likely to use CNFgen by command line. The command line has a powerful interface with many
options and sensible defaults, so that the newcomer is not intimidated but it is still possible to generate nontrivial
formula

33
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Adding a formula family to CNFgen
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CHAPTER 10

Welcome to CNFgen’s documentation!

The main components of CNFgen are the cnfgen library and the cnfgen command line utility.

10.1 The cnfgen library

The cnfgen library is capable to generate Conjunctive Normal Form (CNF) formulas, manipulate them and,
when there is a satisfiability (SAT) solver properly installed on your system, test their satisfiability. The CNFs can
be saved on file in DIMACS format, which the standard input format for SAT solvers1, or converted to LaTeX2 to
be included in a document. The library contains many generators for formulas that encode various combinatorial
problems or that come from research in Proof Complexity3.

The main entry point for the library is the cnfgen.CNF object. Let’s see a simple example of its usage.

>>> from pprint import pprint
>>> import cnfgen
>>> F = cnfgen.CNF()
>>> F.add_clause([1,-2])
>>> F.add_clause([-1])
>>> outcome,assignment = F.solve() # outputs a pair
>>> outcome # is the formula SAT?
True
>>> pprint(assignment) # a solution
[-1, -2]
>>> F.add_clause([2])
>>> F.solve() # no solution
(False, None)
>>> print(F.to_dimacs())
p cnf 2 3
1 -2 0
-1 0
2 0
<BLANKLINE>
>>> print(F.to_latex())
\begin{align}

(continues on next page)

1 http://www.cs.ubc.ca/~hoos/SATLIB/Benchmarks/SAT/satformat.ps
2 http://www.latex-project.org/
3 http://en.wikipedia.org/wiki/Proof_complexity
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(continued from previous page)

& \left( {x_1} \lor {\overline{x}_2} \right) \\
& \land \left( {\overline{x}_1} \right) \\
& \land \left( {x_2} \right)
\end{align}

A typical unsatisfiable formula studied in Proof Complexity is the pigeonhole principle formula.

>>> from cnfgen import PigeonholePrinciple
>>> F = PigeonholePrinciple(5,4)
>>> print(F.to_dimacs())
p cnf 20 45
1 2 3 4 0
5 6 7 8 0
...
-16 -20 0
<BLANKLINE>
>>> F.is_satisfiable()
False

10.2 The cnfgen command line tool

The command line tool is installed along cnfgen package, and provides a somehow limited interface to the
library capabilities. It provides ways to produce formulas in DIMACS and LaTeX format from the command line.
To produce a pigeonhole principle from 5 pigeons to 4 holes as in the previous example the command line is

$ cnfgen php 5 4
c description: Pigeonhole principle formula for 5 pigeons and 4 holes
c generator: CNFgen (0.8.5.post1-7-g4e234b7)
c copyright: (C) 2012-2020 Massimo Lauria <massimo.lauria@uniroma1.it>
c url: https://massimolauria.net/cnfgen
c command line: cnfgen php 5 4
c
p cnf 20 45
1 2 3 4 0
5 6 7 8 0
...
-16 -20 0

For a documentation on how to use cnfgen command please type cnfgen --help and for further documen-
tation about a specific formula generator type cnfgen <generator_name> --help.

10.3 Reference
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Indices and tables

• genindex

• modindex

• search

39



CNFgen Documentation, Release 70e5b68

40 Chapter 11. Indices and tables



Bibliography

[1] Locality and Hard SAT-instances, Klas Markstrom Journal on Satisfiability, Boolean Modeling and
Computation 2 (2006) 221-228

[1] M. Alekhnovich, J. Johannsen, T. Pitassi and A. Urquhart An Exponential Separation between Regular
and General Resolution. Theory of Computing (2007)

[2] R. Raz and P. McKenzie Separation of the monotone NC hierarchy. Combinatorica (1999)

[H85] Haken, A. (1985). The intractability of resolution. Theoretical Computer Science, 39, 297–308.

[ALN16] Atserias, A., Lauria, M., & Nordstr”om, Jakob (2016). Narrow Proofs May Be Maximally Long. ACM
Transactions on Computational Logic, 17(3), 19–1–19–30. http://dx.doi.org/10.1145/2898435

[MV20] Marc Vinyals. Hard examples for common variable decision heuristics. In Proceedings of the 34th
AAAI Conference on Artificial Intelligence (AAAI) 2020, pp. 1652–1659. https://doi.org/10.1609/aaai.
v34i02.5527

[1] Marc Vinyals. Hard examples for common variable decision heuristics. In Proceedings of the 34th
AAAI Conference on Artificial Intelligence (AAAI) 2020, pp. 1652–1659. https://doi.org/10.1609/aaai.
v34i02.5527

[1] M. J. Heule, O. Kullmann, and V. W. Marek. Solving and verifying the boolean pythagorean triples
problem via cube-and-conquer. arXiv preprint arXiv:1605.00723, 2016.

[1] Mladen Miksa and Jakob Nordstrom Long proofs of (seemingly) simple formulas Theory and Applica-
tions of Satisfiability Testing–SAT 2014 (2014)

[2] Ivor Spence sgen1: A generator of small but difficult satisfiability benchmarks Journal of Experimental
Algorithmics (2010)

[3] Allen Van Gelder and Ivor Spence Zero-One Designs Produce Small Hard SAT Instances Theory and
Applications of Satisfiability Testing–SAT 2010(2010)

[1] Pavel Pudlak. Lower bounds for resolution and cutting plane proofs and monotone computations. Jour-
nal of Symbolic Logic (1997)

[1] N. Thapen (2016) Trade-offs between length and width in resolution. Theory of Computing, 12(1),
1–14.

41

http://dx.doi.org/10.1145/2898435
https://doi.org/10.1609/aaai.v34i02.5527
https://doi.org/10.1609/aaai.v34i02.5527
https://doi.org/10.1609/aaai.v34i02.5527
https://doi.org/10.1609/aaai.v34i02.5527


CNFgen Documentation, Release 70e5b68

42 Bibliography



Python Module Index

f
cnfgen.families.cliquecoloring, 22
cnfgen.families.coloring, 12
cnfgen.families.counting, 11
cnfgen.families.cpls, 23
cnfgen.families.graphisomorphism, 12
cnfgen.families.ordering, 13
cnfgen.families.pebbling, 13
cnfgen.families.pigeonhole, 14
cnfgen.families.pitfall, 17
cnfgen.families.ramsey, 18
cnfgen.families.randomformulas, 19
cnfgen.families.subgraph, 20
cnfgen.families.subsetcardinality, 21
cnfgen.families.tseitin, 23

43



CNFgen Documentation, Release 70e5b68

44 Python Module Index



Index

A
all_clauses() (in module cnf-

gen.families.randomformulas), 20

B
BinaryCliqueFormula() (in module cnf-

gen.families.subgraph), 20
BinaryPigeonholePrinciple() (in module cn-

fgen.families.pigeonhole), 15

C
clause_satisfied() (in module cnf-

gen.families.randomformulas), 20
CliqueColoring() (in module cnf-

gen.families.cliquecoloring), 22
CliqueFormula() (in module cnf-

gen.families.subgraph), 20
cnfgen.families.cliquecoloring (module),

22
cnfgen.families.coloring (module), 12
cnfgen.families.counting (module), 11
cnfgen.families.cpls (module), 23
cnfgen.families.graphisomorphism (mod-

ule), 12
cnfgen.families.ordering (module), 13
cnfgen.families.pebbling (module), 13
cnfgen.families.pigeonhole (module), 14
cnfgen.families.pitfall (module), 17
cnfgen.families.ramsey (module), 18
cnfgen.families.randomformulas (module),

19
cnfgen.families.subgraph (module), 20
cnfgen.families.subsetcardinality

(module), 21
cnfgen.families.tseitin (module), 23
CountingPrinciple() (in module cnf-

gen.families.counting), 11
CPLSFormula() (in module cnfgen.families.cpls), 23

E
EvenColoringFormula() (in module cnf-

gen.families.coloring), 12

G
GraphAutomorphism() (in module cnf-

gen.families.graphisomorphism), 12
GraphColoringFormula() (in module cnf-

gen.families.coloring), 12
GraphIsomorphism() (in module cnf-

gen.families.graphisomorphism), 12
GraphOrderingPrinciple() (in module cnf-

gen.families.ordering), 13
GraphPigeonholePrinciple() (in module cnf-

gen.families.pigeonhole), 15

I
intlog2() (in module cnfgen.families.cpls), 23

N
non_edges() (in module cnfgen.families.subgraph),

21

O
OrderingPrinciple() (in module cnf-

gen.families.ordering), 13

P
PebblingFormula() (in module cnf-

gen.families.pebbling), 13
PerfectMatchingPrinciple() (in module cnf-

gen.families.counting), 11
PigeonholePrinciple() (in module cnf-

gen.families.pigeonhole), 16
PitfallFormula() (in module cnf-

gen.families.pitfall), 17
PythagoreanTriples() (in module cnf-

gen.families.ramsey), 18

R
RamseyNumber() (in module cnf-

gen.families.ramsey), 18
RamseyWitnessFormula() (in module cnf-

gen.families.subgraph), 21
RandomKCNF() (in module cnf-

gen.families.randomformulas), 19

45



CNFgen Documentation, Release 70e5b68

RelativizedPigeonholePrinciple() (in
module cnfgen.families.pigeonhole), 17

S
sample_clauses() (in module cnf-

gen.families.randomformulas), 20
sample_clauses_dense() (in module cnf-

gen.families.randomformulas), 20
SparseStoneFormula() (in module cnf-

gen.families.pebbling), 13
StoneFormula() (in module cnf-

gen.families.pebbling), 14
SubgraphFormula() (in module cnf-

gen.families.subgraph), 21
SubsetCardinalityFormula() (in module cnf-

gen.families.subsetcardinality), 21

T
TseitinFormula() (in module cnf-

gen.families.tseitin), 23

V
VanDerWaerden() (in module cnf-

gen.families.ramsey), 19

46 Index


	Exporting formulas to DIMACS
	Exporting formulas to LaTeX
	Reference
	Testing satisfiability
	Formula families
	Included formula families
	Command line invocation

	Graph based formulas
	Directed Acyclic Graphs
	Bipartite Graphs
	Graph I/O
	Graph generators
	References

	Post-process a CNF formula
	Example: OR substitution
	Using CNF transformations

	The command line utility
	Adding a formula family to CNFgen
	Welcome to CNFgen’s documentation!
	The cnfgen library
	The cnfgen command line tool
	Reference

	Indices and tables
	Bibliography
	Python Module Index
	Index

